
International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1821
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Application of High Performance Computing for
Calculation of Reserves for a Company

J Bhanu Teja , Pallav Kumar Baruah , Satya Sai Mudigonda , and Phani
Krishna Kandala

Abstract— Calculating the reserves for an insurance company is very crucial. The exercise of reserving is done in periodic fashion. Depending upon the
reserve estimates the company will plan how to invest their money in different avenues and gain profit. Time required to calculate the reserves will grow
exponentially if the input data size increases. This computation of reserving might need to be done several times taking different factors into
consideration. Hence the computation becomes even more costly in terms of time.

We applied HPC to calculate reserves using chain ladder method, inflation adjusted chain ladder method,Inflation adjusted Bornhuetter-Ferguson. Using
GPUs we showed an improvement of 840X speed up compared to the serial execution for Inflation adjusted Chain Ladder Method and an improvement
of 940X speed up for Inflation adjusted Bornhuetter-Ferguson compared to the serial execution maintaining the accuracy.

Index Terms— Accident year cohort, Chain ladder method (CLM), CUDA, Development year, Graphical Processing Unit (GPU) , IBNR, Inflation
Adjusted CLM, Reserve,

—————————— ——————————

1 INTRODUCTION

Reserving is a complex and intensive calculation process for
estimating liabilities of an organization. Insurance and
reinsurance companies invest lot of their resources in this
activity on a continuous basis. To improve the performance of
this frequent activity, we explored the possibility of using
High Performance Computing (HPC).

J Bhanu Teja is currently pursuing masters degree in
Computer Science in Department of Mathematics and
Computer Science in Sri Sathya Sai Institute of Higher
Learning, Puttaparthi, India.
PH: +91 7989387983, Email: bhanu257@gmail.com.

Pallav Kumar Baruah, Head of Department, Department of
Mathematics and Computer Science in Sri Sathya Sai Institute
of Higher Learning, Puttaparthi, India.
PH: +91 9440699887, Email: pkbaruah@sssihl.edu.in.

Satya Sai Mudigonda is a professionally qualified associate
actuary and management consultant. He is currently teaching
the postgraduate students in Department of Mathematics and
Computer Science in Sri Sathya Sai Institute of Higher
Learning, Puttaparthi, India. PH: +91 9603573032,
Email:satyasaibabamudigonda@sssihl.edu.in

Phani Krishna Kandala, is currently Assistant Vice President
in Swiss Re. He has done in Master’s from Sri Sathya Sai
Institute of Higher Learning, Puttaparthi, India.
PH:+91 91 82 472136, Email:kandala.phanikrishna@gmail.com

In recent years, HPC has been applied in diverse fields of
finance. Focus has been towards security and derivative
pricing. Joshi [2] priced Asian options and achieved a speed
up of 150X. Nguyen [3] parallelized Cox-Ross-Rubinstein
pricing model on GPUs and showed a speed up of 30X.
Further, in 2012 Tucker and Bull [1] have explored HPC to
insurance company solvency calculations and achieved a
substantial improvement in performance over commercial
software.

For many financial applications GPUs proved to be successful
platforms for such intense calculations. In our work, we
applied HPC to calculate reserves using the Chain Ladder
Method (CLM) as well as inflation adjusted CLM with a more
focus on the later as it involves increased set of calculations.
Reserve estimation calculations provide a great opportunity to
exploit technical superiority of HPC over traditional way of
computing. Results of our work show that substantial
improvement in performance (speed more than 940X) can be
achieved using CUDA programming on GPUs.
There are many reasons why reserving is done the most
common ones are:

● To equip managers make informed decisions based
on estimated calculations.

● To assess the value of a company for purchase or sale.
● To compare the achieved versus expected results.
● To assess profitability business unit / product wise.
● To provide inputs for premium rating process
● To prepare accounts for insurer and regulators.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1822
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 FIG.1 HIGH LEVEL VIEW OF RESERVING.[4]
1.1Motivation
Reserving is a costly process. High performance computing
can reduce this price. The key reasons why there is need for
HPC in reserving are:

● Scalability - be able to estimate liability for larger data
sets

● Frequency - be able to perform calculations more
frequently and also dynamically.

● Time - for the time-efficient use of the system
resources

● Cost - for the cost-efficient use of the resources
involved

● Quality - to maintain or improve the quality of
output

The figure below shows how frequently each of the reserving
methods are used. Chain ladder stands top of the chart with
its wide use. Inflation adjusted is ever more powerful but
rarely used in practice because it takes a lot of time. So we in
this work parallelised this method to make it available in real
time.
The rest of the paper is organized as follows. Section 2 talks

about the concept and reserving methods which are chain
ladder,inflation adjusted chain ladder and inflation adjusted
Bornhuetter methods. Section 3 provides implementation
details and results we got. Section 4 concludes by giving the
summary and provides the necessary information for further
improvement in this study.

2 METHODS AND METHODOLOGY
2.1 Incurred Triangles
For every accident year cohort, let us think there are n number
of claims which occurred during the period, but only x claims
(x <n) were reported to the insurer. The unreported claims are
known as IBNR claims which we are trying to estimate using
chain ladder and Bornhuetter Ferguson methods. We basically
use historical/past experience by obtain the future reported
claims. Mathematically, the run off triangle general form will
be expressed as follows:
Each entry cij, represents the incremental claims and can be
expressed as
 Cij = lj Di * Ai+j + rij
Where rj is the development factor for year j, representing the
proportion of claim payments in development year j.
Each lj is independent of the origin year.
Di is a parameter varying by origin year, i, representing of
exposure.
Ai+j, is a parameter varying over the calendar year, e.g.
inflation.
rij error term .
 FIG 2. RUN OFF TRIANGLES
Reserving is estimating the lower triangle i.e. squaring the
triangle as shown in the below figure.

2.2 CHAIN LADDER METHOD
Chain ladder[5] is a traditional method based on statistics,
used for estimating the ultimate value of a set of development
data. The main idea behind this method is that, an average of
past development is projected onto the future. Based on
calculations done by actuary, the projection for successive
periods in future is done using the ratios of cumulative past
development.
The basic chain ladder method takes the form:
 Cij = lj * Di + rij using the
statistical model which was described above.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1823
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 Fig. 3. ESTIMATING THE LOWER TRIANGLE
The assumptions for this method are:
– The assumed future pattern of claims development derived
from past experience will remain stable in the future.
– The first accident year is fully run-off or its development to
ultimate can be predicted with confidence.
– An explicit inflation assumption is made, for both past and
future claims.
– The choice of inflation index is key to the accuracy of the
method.
– Works well for stable, reliable and consistent data .

FIG.4. CHAIN LADDER METHOD

2.3 INFLATION ADJUSTED CHAIN LADDER

The difference between this method and the basic method is
that an inflation index is applied to the past claims data to
bring it into line with the latest year, and to inflate the
projected claims to the expected year of payment.
This method requires an appropriate inflation index to be
available for the business being considered.
The choice of index is key to the success of reserving using this
method,including changes in inflation over time and choice of
suitable benchmarks where data is sparse.

Dealing with past inflation:
In the case of run-off triangles which are grouped under
calendar year, the claims inflation will affect the payments.

The idea behind the working of inflation adjusted chain ladder
method is that, the payments in the triangle are adjusted to the
inflation by taking into the account the corresponding
inflation factor Firstly the incremental payments, are to be
calculated using the cumulative totals, because while
adjusting to inflation, it is necessary to consider payments in
each calendar year rather than cumulative totals. This is done
by finding successive difference along each row.

Dealing with future inflation:
When adjusting to the effect of inflation, the cumulative
payments don’t consider the effect of future inflation. So
assuming a rate of future inflation based on past information
available on the inflation factors estimate.

FIG. 5. INFLATION ADJUSTED CHAIN LADDER METHOD

2.4 BORNHUETTER-FERGUSON METHOD
The Bornhuetter-Ferguson method combines the estimated
loss ratio with a projection method. The assumptions of this
method are similar to the chain ladder method.
The concepts behind the method are:
– That whatever claims have already developed in relation to a
given origin year, the future development pattern will follow
that experienced for other origin years.
– The past development for a given origin year does not
necessarily provide a better clue to future claims than the
more general loss ratio.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1824
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

FIG. 6. BORNHUETTER-FERGUSON METHOD

3 RESULTS
Based on available industry data, relevant features required
for calculating reserves have been extracted from the data.
These features were used to generate 10 million records for
this purpose. This data was validated by experts from the field
of actuaries. All the implementations were performed on this
data. For testing the accuracy of the model, we ran the model
on the available real data. The implementation details, the
analysis of the performance, and accuracy were discussed in
below sections.
The input to all the methods, are matrices which are obtained
from the previous chapter after cleaning the data. These are
known as input triangles, because the lower triangle elements
of the matrices excluding the diagonal elements are all zeros.
Implementations of the reserve methods which were
discussed in previous section, will estimate these lower
triangle values using the values in the upper triangle of the
matrix.

3.1 EXPERIMENTAL SETUP
For serial implementations we have used the intel i5
processor. The parallel Cuda[7] versions were run on NVIDIA
GeForce TITAN X GPUs. OpenMP version 4.0 [6]was used.
The technical details about both systems are given in tables
below. For validation of the results the built in packages in
R(version
3.4.3) were used.

FIG. 7. CPU SPECIFICATIONS

Fig. 8. GPU SPECIFICATIONS

3.2 CHAIN LADDER METHOD

 FIG.9 EXECUTION FLOW OF CHAIN LADDER METHOD

Firstly, the serial version of chain ladder method, which was
discussed in the previous section, was implemented using C
programming language. The method was run on different
sizes of data. To the test the correctness of the implementation
we have run it on the real data and results were compared.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1825
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Results were even compared to ones calculated using the built
in packages in language R. Our implementation of the method
give exact results, excluding few rounding off errors which are
agreeable in this context. The below figures hows the time
taken for the model to estimate the reserves for given sizes
of the matrices.

FIG .10. EXECUTION TIME OF CHAIN LADDER METHOD

As, we can clearly see from the above graph, time taken to run
the method increased exponentially as the input size
increased. So, using profiling tool gprof, the method was
profiled for different sizes of matrices varying from 5000*5000
to 30000*30000. It was found that, for a O(N2)size matrix there
were O(N2) floating point operations being performed. The
profiling results are as shown in the below pie chart.

 FIG.11. PROFILING ANALYSIS OF CHAIN LADDER METHOD

It was found out that 35% of execution time was spent in
module which was calculating the development factors, and
around 31% of the time was spent module which estimates the
reserves using the development factors, i.e. the last step in the
process. Other modules together contribute to 34% of the time.
So using the OpenMP compiler directives the serial method
was first parallelized. The two modules which were taking
almost 66% of the execution time were parallelized by using
OpenMP directives like #pragma omp parallel,#pragma omp
parallel for, #pragma omp parallel sections etc.
This OpenMP parallel implementation was run on the intel i5
system. It was run for different data sizes as mentioned above
for the serial implementation. Finding the best value of the
num threads parameter was little tedious. Different values
were tried to see which one gives the best performance, and
finally it was inferred that 8 was the best possible value to get
good performance.
The results were validated again using the real data and serial
implementations. Except for few round of errors, the results
were accurate. The below graph shows the time taken for
execution of the OpenMP-parallel implementation. From the
graph it can be inferred that almost 2X performance was
FIG .12. OPENMP-EXECUTION TIME OF CHAIN LADDER METHOD.

gained using the parallel implementation.

Taking the cue from improvement we got using OpenMP, the
method was coded using CUDA programming language to
run on GPUs. The whole code was built from scratch using
CUDA. All possible modules which don’t have dependency
among them were parallelized. For the computations, which
are dependent on just single element of the matrix, each
thread was given the work to compute that particular task. If
the computations were row dependent or column dependent,
then the division of work for threads was according to
corresponding blocks. Not only every possible module was
parallelized, memory management techniques like memory
coalescing were implemented to achieve speed up.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1826
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

So by allocating the work as described above, the CUDA
implementation was run on GPUs for same data sizes as
described above. Again the results were validated using the
real data and the serial implementation results. The results
were accurate.The graph below shows the time taken to run
by CUDA implementation of chain ladder method.

Now if we compare the results of all three implementations.
The GPUs performed better than both serial and OpenMP
implementations. A maximum speed of up 4X was achieved
using the GPUs. The figure below compares the time taken by
all the three implementations and shows the improvement
achieved using GPUs.

FIG .13. CUDA-EXECUTION TIME OF CHAIN LADDER METHOD

FIG .14. COMPARISON OF EXECUTION TIMES OF CHAIN LADDER METHOD

FIG .15. SPEED UP ACHIEVED FOR CHAIN LADDER METHOD

3.3 INFLATION ADJUSTED CHAIN LADDER

The difference between the Chain Ladder and Inflation
adjusted Chain Ladder method was described in the previous
section. Accordingly the appropriate changes were made in
the serial code of Chain Ladder to make it Inflation Adjusted
CLM. Then the serial code was run for different data sizes
similar? .

FIG.16. EXECUTION FLOW OF INFLATION ADJUSTED CHAIN LADDER
METHOD

The figure below shows the time taken for the serial
implementation of inflation adjusted CLM. From graph we
can observe that as the data size was increased the time taken
to calculated the reserves grew exponentially. To formulate in
terms of complexity for a O(N2) size matrix there are O(N3)
floating point operations. Profiling through gprof tool for
different sizes of data has shown that almost 99% percent of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1827
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

the execution time is spent in calculating the effect of inflation

on the input triangle.
FIG .17. EXECUTION TIME OF INFLATION ADJUSTED CHAIN

LADDER METHOD

FIG.11. PROFILING ANALYSIS OF INFLATION ADJUSTED CHAIN LADDER
METHOD

As before first, the serial code was converted into parallel

using OpenMP compiler directives similar to ones discussed
in section 3.2 and an improvement of around 1.5X was seen.
This can be visualized from the figure below.

FIG .18.. COMPARISON OF EXECUTION TIME OF INFLATION ADJUSTED
CHAIN LADDER METHOD

The method was then implemented on GPUs using the CUDA
programming language. Since the method uses matrices for
storing the data and most of the operations are on matrices, it
is quite evident that GPU architecture suits best for this
method and our results prove this fact.

For finding the effect of inflation on the input triangle, each
element of incremental triangle is multiplied with the inflation
factor recursively. This part of code is taking most of execution
time. Since the effect of inflation on each of the element can be
calculated independently of others, each thread is given the
work to compute the inflation effect on one element each. The
figure below summarizes the work allocation of threads. Each
thread element works on just one element of the input data.

FIG .17. WORK ALLOCATION OF THREADS

Since GPUs work well with vectors, the input was taken in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1828
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

form of single dimensional vector. By dividing work among
threads we can achieve speed up, in this method each thread
was given the work to compute the effect of inflation on that
input element. As the data size increased the number of
threads were also increased accordingly. The below figures
show the time taken by GPUs compared to serial and OpenMP
and the improvement achieved by parallelizing the effect of

inflation module.
FIG .18. COMPARISON OF EXECUTION TIMES OF INFLATION ADJUSTED
CHAIN LADDER METHOD
GPUs proved to be very successful for implementation of
Inflation Adjusted CLM, as the data size increased the speed
up also increased exponentially.
We achieved a maximum speed up of around 470X.

FIG .19. SPEED UP ACHIEVED USING INFLATION ADJUSTED CHAIN LADDER
METHOD

Similarly the other modules were parallelized. The dis-
accumulation module is reverse of the accumulation module.
The work allocation of threads was similar to the ones
described in section 3.2. We finally achieved max speed up of
840X.

FIG .20. FULL SPEED UP ACHIEVED USING INFLATION ADJUSTED CHAIN
LADDER METHOD

2.4 BORNHUETTER-FERGUSON METHOD:
Similar to other methods first the serial method was
implemented using C language. As before, as the size
increased the time taken to run the method also increased
exponentially. The input to this method is also a matrix. First
the initial loss ratio is estimated. Then it is adjusted to inflation
and then after finding factors, use them to project to ultimate.
The below figure shows time taken by the method to run on
different sizes of the data. For validation of results, real data
was used, except for few rounding off errors the results were
accurate.

FIG. 21.EXECUTION FLOW OF BORNHUETTER-FERGUSON METHOD

After observing the graph, it was quite evident that this
method is taking lot of time to run, in order to parallelize, we
need to know the modules which are taking most of the time

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1829
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

first the code was profile using gprof. The figure below shows
the percentage of amount of time each module takes to run.
For a O(N2) size matrix there are O(N3) floating point
operations being
performed.

FIG.22. SERIAL EXECUTION TIME OF BORNHUETTER-FERGUSON METHOD.

Profiling through gprof tool for different sizes of data has
shown that almost 75% percent of the execution time is spent
in calculating the effect of inflation on the input triangle. In
this module each element is adjusted according to the inflation
factor recursively. Finding future claims is taking almost 8% of
the execution time.

 FIG.23. PROFILING ANALYSIS OF BORNHUETTER-FERGUSON METHOD

Using OpenMP, the inflation adjusted module and finding
initial estimates modules were parallelized, using the compiler
directives like #pragma omp parallel, #pragma omp parallel

for, #pragma omp parallel sections etc.

.
FIG.24. OPENMP EXECUTION TIME OF BORNHUETTER-FERGUSON METHOD

Then using C-CUDA programming language, the method
was implemented on GPUs. The inflation adjusted module
was parallelized by giving each thread the work to compute
the effect of inflation on that element recursively. The speed
up achieved was quite significant. Almost 480X speed up was
observed which can be seen from the figures below.

FIG.25. CUDA EXECUTION TIME OF BORNHUETTER-FERGUSON METHOD

After parallelizing the remaining modules, where there was
no dependency and using memory management techniques
for faster access of the data, like memory coalescing, a
maximum speed up 940X was achieved.
FIG .26. SPEED UP ACHIEVED FOR BORNHUETTER-FERGUSON METHOD

2.4 INFERENCE

There are maximum 210 threads available per block and there
are 210 blocks in X direction and 210 blocks in Y direction. So
total number of threads available for our use is 230 . We have

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 1830
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

varied the matrix sizes from 5000*5000 to 30000*30000. So the
total number of threads which the implementations require
were available. For 30000*30000 matrix almost 5 * 109 threads
were used.
As the data size increased the speed up also increased
exponentially, the bottleneck for the speed up will be the
number of thread available for execution of the method.
For OpenMP implementation we have used 8 threads to
decrease the execution time to almost half of the serial time.
For this implementation 8 threads seemed to be suiting most,
more than 8 because of communication between threads the
speed up was degrading.
Maximum efficiency can be gained only when the hardware
resources are used utilized to their full extent. In our
implementation too we gained peak performance by utilizing
all the hardware resources available.

4 CONCLUSIONS AND FUTURE WORK

Using our implementation of the chain ladder and
Bornhuetter-Ferguson methods on GPUs we are getting speed
up that is increasing as data size is increasing maintaining the
accuracy. We have got down the execution time of these
methods from 6 hrs to just under one minute.
We have parallelized three of the most widely used methods
for calculation of reserves, but there are few more like CAPE
COD method, which can be parallelized to be used in real
time. We have explored only one domain in field of actuaries,
namely reserving other concepts like pricing a policy,
catastrophic modeling which deals with natural disasters can
be parallelized..

5 REFERENCES
1.) Application of High Performance Computing to Solvency
and Profitability Calculations for Life Assurance Contracts
Mark Tucker and J. Mark Bull.
2.) Joshi, M.S., Graphical Asian Options, The University Of
Melbourne.
3.) Jauvion, G. and Nguyen, T., Parallelized Trinomial Option
Pricing Model On GPU With CUDA. www.arbitragis-
research.com/cuda-in-computational-finance/
coxross-gpu.pdf
4.) Claims Reserving Working Party Paper Graham Lyons,Will
Forster,Paul Kedney,Ryan Warren,Helen Wilkinson
5.) Peter D England and Richard J Verrall, “Stochastic claims
reserving in general insurance,” British Actuarial Journal, vol.
8, no. 3, pp. 443–518 2002.
6.) OpenMP Architecture Review Board, OpenMP Application
Program Interface, Version 3.1, July 2011,
www.openmp.org/mp-documents/OpenMP3.1.pdf.
7.) NVIDIA, NVIDIA CUDA C Programming Guide Version

4.2, 2012.
8.)Jones, A. R., P. J. Copeman, E. R. Gibson, N. J. S. Line, J. A.
Lowe, P. Martin, P. N. Matthews, and D. S. Powell. "A change
agenda for reserving. Report of the general insurance
reserving issues task force (GRIT)." British Actuarial Journal
12, no. 3 (2006): 435-599.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Methods and Methodology
	2.1 Incurred Triangles

	2.2 Chain Ladder Method
	2.3 Inflation adjusted Chain Ladder
	2.4 Bornhuetter-Ferguson Method
	3 Results
	3.1 experimental setup
	3.2 Chain Ladder Method
	3.3 Inflation adjusted Chain Ladder
	2.4 Bornhuetter-Ferguson Method:
	/

	2.4 Inference
	4 Conclusions and future work
	5 references

